

Asynchronous Perception and Control on Quadrotors

Florian Pouthier

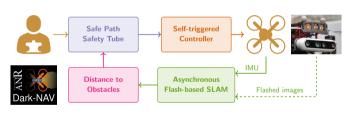
Nantes Univ., CNRS, École Centrale Nantes, LS2N, 44300 Nantes, France

JJCR 2025 - Journée des Jeunes Chercheur·euse·s en Robotique

September 29, 2025 - IRISA Rennes

Quadrotor Challenges in Dark and Cluttered Environments

- Quadrotors widely used in exploration and search-and-rescue missions
- These missions are challenging in dark and cluttered environments
 - ► GNSS-denial → visual inertial odometry for localization
 - **▶** Dark environments → comptatible sensors (lightning system, . . . ?)
 - ► Fast exploration for search-and-rescue requires low-latency
- Traditional synchronous pipelines are too slow or too resource-hungry
- Goal: New frameworks for perception and control on quadrotors
- ► Two asynchronous paradigms: flash-based and event-based


Inspection of tunnels with quadrotors

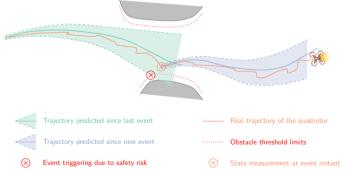
© 2019 National Geographic Partners, LLC

Flash-based Perception on Quadrotor

- Dark-NAV: from flashlight fish¹ to quadrotor strategies in the dark
- Design of a new sensor synchronizing RGB-D images with light flashes²
- Visual-inertial SLAM: map and pose from flashed images³

¹Hellinger et al. The Flashlight Fish Anomalops katoptron Uses Bioluminescent Light to Detect Prev in the Dark, PLOS ONE, 2017.

From flashlight fish to Dark-NAV quadrotor deployment


SLAM reconstruction in the dark based on flashes

²Castillo-Zamora..... Pouthier et al. Synchronization of a New Light-Flashing Shield With an External-Triggered Camera, IEEE Sensors Letters, 2023.

³Ndove et al., VIGS-Fusion: Fast Gaussian Splatting SLAM processed onboard a small quadrirotor, International Conference on Advanced Robotics (ICAR), 2025.

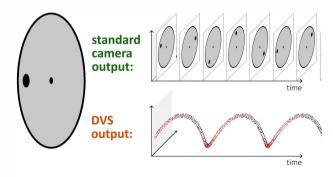
Flash-based and Self-Triggered Control on Quadrotor

- Reachable tube of system state → open-loop dynamics ⊕ uncertainties
- Safety tube → distance to obstacles and closed-loop dynamics
- Self-triggered 4 strategy \leftarrow trigs before reachability crosses safety limits

Event triggering due to safety risk
 State measurement at event i

 Pouthier et al. Guaranteed Self-Triggered Control of Disturbed Systems: A Set Invariance Approach. Int. J. Robust Nonlinear Control (IJRNC), 2025.

Flash-based navigation among obstacles with flashes



© 2023 Vision Vibes

Asynchronous Perception and Control on Quadrotors

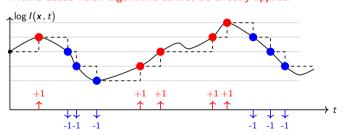
Event Camera: an Innovative Asynchronous Sensor

- An event camera (DVS)⁵ only measures motion in the scene
- Stream of events⁶ $e_k \triangleq (x_k, t_k, p_k)$ occuring on brightness changes

⁵Lichtsteiner et al., A 128×128 120 dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE J. Solid-State Circuits, 2008.

What the fly sees when you try to swat it

Event camera stream when moving in a room


⁶Gallego et al., Event-Based Vision: A Survey, IEEE T-PAMI, 2022.

Event Camera: Event Generation Model and Opportunities

Events^{5,6} \leftarrow log-intensity thresholds crossing on pixel x_k at time t_k :

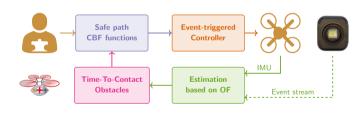
$$\Delta L(\mathbf{x}_k, t_k) \triangleq \log I(\mathbf{x}_k, t_k) - \log I(\mathbf{x}_k, t_k - \Delta t_k) = p_k C.$$

- $C \triangleq \text{contrast threshold}, p_k \triangleq \text{polarity (brightness increase / decrease)}$
- Advantages: No motion blur, High Dynamic Range (> 120dB vs 60dB)
- ► Frame-based vision algorithms cannot be directly applied!

⁵Lichtsteiner et al., A 128×128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE J. Solid-State Circuits, 2008.

Motion blur avoidance with event camera⁷

HDR capabilities of event camera driving out a tunnel⁸


⁶Gallego et al., *Event-Based Vision: A Survey,* IEEE T-PAMI, 2022.

⁷Rebecq et al., *ESIM: an Open Event Camera Simulator*, PMLR Conference on Robot Learning, 2018.

⁸Gehrig et al., *DSEC: A Stereo Event Camera Dataset for Driving Scenarios*. IEEE RA-L. 2021.

Event-based Perception and Control on Quadrotor

- Detection of cars and persons with low-latency YOLO⁹
- State estimation based on Optical Flow (OF) ← directly from events
- Safe path computed on Time-to-Contact obstacles (no global map)

Low-latency YOLO detection onboard quadrotor⁹

⁹Amessegher, ..., Pouthier et al. Towards Low-Latency Object Detection on Board Reactive Search-and-Rescue Drones, Int. Symp. Saf. Secur. Rescue Robot., 2025.

Asynchronous Strategies for Efficient and Bio-inspired Quadrotors

- Asynchronous strategies efficient in dark and clutter
- Flash-based paradigm inspired by the flashlight fish:
 - \ light power consumption quadrotor autonomy
 - √ light dissipated power light cooling
- **Event-based paradigm inspired by the flies (***drosophila, etc...*):
 - detection latency diagnosis speed
 - - Optical flow pipeline fast estimation and safe navigation

Doing less things, at the right instant, to explore further

Thank You! - Questions

Asynchronous Perception and Control on Quadrotors

Florian Pouthier

Postdoctoral Fellow at LS2N Nantes

florian.pouthier@ls2n.fr

