

Lyapunov Stability Theory

Applications to Stability, Robustness and Safety of Aerial Drones

Florian Pouthier

florian.pouthier@ls2n.fr

Nantes Univ., CNRS, École Centrale Nantes, LS2N, 44300 Nantes, France

MSc Control and Robotics - Advanced Robotics (CORO IMARO) - DRONES

December 3, 2025 - Centrale Nantes

Challenges of Quadrotor Stability and Robustness

- Quadrotors are nonlinear and underactuated systems (6 DoF, 4 inputs)
- Recall the quadrotor dynamics with nonlinearities and control variables

$$\begin{cases}
m\ddot{x} &= T(\sin\psi\sin\phi + \cos\psi\sin\theta\cos\phi) \\
m\ddot{y} &= T(-\sin\phi\cos\psi + \sin\psi\sin\theta\cos\phi) \\
m\ddot{z} &= T\cos\theta\cos\phi - mg \\
I_{xx}\dot{p} &= qr(I_{yy} - I_{zz}) + \tau_{\phi} \\
I_{yy}\dot{q} &= pr(I_{zz} - I_{xx}) + \tau_{\theta} \\
I_{zz}\dot{r} &= pq(I_{xx} - I_{yy}) + \tau_{\psi}
\end{cases}$$

Source: University of Pennsylvania

- Disturbances (wind, aerodynamic effects) and uncertainties also occur
- Lecture Goals
 - ✓ Review the stability definitions for (non)autonomous systems
 - ✓ Show that stability properties of linear systems no longer stand for nonlinear systems
 - ✓ Apply Lyapunov's method to analyze stability of nonlinear aerial systems
 - √ Get insights into the role of input-to-state stability (ISS) in robustness

Lecture Outline

- Introduction
- Preliminary Notions of Stability
- 3 Stability Analysis by Lyapunov's Direct Method
- 4 LaSalle's Invariance Principle
- Input-to-State Stability Analysis

Lecture Outline

- Introduction
- Preliminary Notions of Stability
- Stability Analysis by Lyapunov's Direct Method
- 4 LaSalle's Invariance Principle
- Input-to-State Stability Analysis

Equilibrium Points of Autonomous Systems

■ Consider the autonomous (no-input) time-invariant system

$$\dot{m{\xi}} = f(t, m{\xi})$$
 with initial conditions $m{\xi}(0) = m{\xi}_0$

- $f: \mathcal{D} \to \mathbb{R}^n$ is a locally Lipschitz map from a domain $\mathcal{D} \subset \mathbb{R}^n$ into \mathbb{R}^n
- Interest: behavior of $\boldsymbol{\xi}(t)$ trajectories around equilibrium points
- **Equilibrium point** ξ^* : a trajectory that starts at ξ^* stays at ξ^* forever $\Rightarrow f(\xi^*) = \xi^*$

Remark 1 - Non-zero equilibrium points

Without loss of generality, we consider the equilibrium point at the origin,

$$\boldsymbol{\xi}^{\star} = \mathbf{0} \in \mathbb{R}^n$$

Any equilibrium $\xi^\star \neq 0$ can be shifted to the origin by considering the change of variables $\eta = \xi - \xi^\star$.

The derivative of η is then given by

$$\dot{\eta} = \dot{\xi} = f(\eta + \xi^{\star}) \triangleq g(t, \eta)$$
 where $g(0) = 0$

In the new variable η , the system has equilibrium at the origin.

Stability of Equilibrium Points

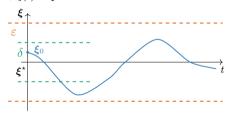
Stability describes the behavior of $\xi(t)$ trajectories around the equilibrium point ξ^*

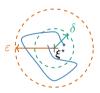
Definition 1 - Stability (in the sense of Lyapunov)

The equilibrium point $\xi^* = 0$ is stable if

$$\forall \varepsilon > 0, \quad \exists \ \delta = \delta(\varepsilon) > 0 \quad \text{such that} \quad ||\xi_0|| < \delta \implies ||\xi(t)|| < \varepsilon, \ \forall t > 0.$$

In other words, $\xi(t)$ trajectories remain bounded if initial condition ξ_0 is close enough to equilibrium ξ^*





Definition 2 - Unstability

The equilibrium point $\xi^* = 0$ is unstable if it is not stable.

Attractivity of Equilibrium Points

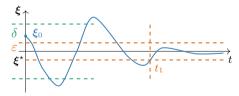
Attractivity describes the convergence of $\xi(t)$ trajectories to the equilibrium point ξ^*

Definition 3 - Attractivity

The equilibrium point $\xi^* = 0$ is attractive if

$$\begin{split} &\exists \delta>0, \quad ||\xi_0||<\delta \ \Rightarrow \ \lim_{t\to\infty} \xi(t) = \mathbf{0} \\ &\text{or} \quad \exists \delta>0, \quad ||\xi_0||<\delta \ \Rightarrow \ \forall \varepsilon>0, \quad \exists t_1>0 \ \text{ such that } \ \forall t>t_1, \quad ||\xi(t)||<\varepsilon \end{split}$$

In other words, $\xi(t)$ trajectories converge to 0 for $t \to \infty$ if initial condition ξ_0 is close enough to equilibrium ξ^*



Definition 4 - Asymptotic stability

The equilibrium point $\xi^* = 0$ is asymptotically stable if it is stable and attractive.

Stability using the Linearization Test

- Idea: Use the linear approximation of a nonlinear system at $\xi^* = 0$ to conclude on its local stability
- The following theorem is known as the Lyapunov's Indirect (first) Method

Theorem 1 - Local asymptotic stability - Linearization

Consider the equilibrium point $\xi^{\star}=0$. Calculate the Jacobian matrix of the system

$$oldsymbol{A} = \left. rac{\partial f(oldsymbol{\xi})}{\partial oldsymbol{\xi}}
ight|_{oldsymbol{\xi} = oldsymbol{\xi}^{\star}}$$

If $\text{Re}\lambda_i < 0$ for all eigenvalues of A, then $\xi^* = 0$ is asymptotically stable.

If $\text{Re}\lambda_i > 0$ for one or more of the eigenvalues of A, then $\mathcal{E}^* = \mathbf{0}$ is unstable.

Remark 2 - Eigenvalues with null real parts

Theorem 1 does not say anything about the case when $Re\lambda_i \leq 0$ for all i, with $Re\lambda_i = 0$ for some i.

In this case, linearization fails to determine the stability of the equilibrium point.

- Drawback #1: Theorem 1 provides only local conclusions on the stability!
- Drawback #2: Attractivity ⇒ stability for linear systems, which is not the case for nonlinear systems!

Lecture Outline

- Introduction
- Preliminary Notions of Stability
- 3 Stability Analysis by Lyapunov's Direct Method
- 4 LaSalle's Invariance Principle
- Input-to-State Stability Analysis

Energy Concepts for Stability

Pendulum system with state variables $x_1 = \theta$ and $x_2 = \dot{\theta}$

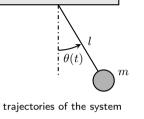
$$\dot{\xi} = \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}$$

How $E(\xi)$ evolves in time? Draw stability conclusions for k=0 and k>0.

- In 1892, A. M. Lyapunov generalized the concept to more general functions (than energy)
- Let $V: \mathcal{D} \to \mathbb{R}$ be a \mathcal{C}^1 function defined in a domain $\mathcal{D} \subset \mathbb{R}^n$ that contains the origin
- The derivative of V along the system trajectories, denoted $\dot{V}(\xi)$, is given by

$$\dot{V}(\xi) = \sum_{i=1}^{n} \frac{\partial V}{\partial \xi_{i}} \dot{\xi}_{i} = \sum_{i=1}^{n} \frac{\partial V}{\partial \xi_{i}} f_{i}(\xi) = \frac{\partial V}{\partial \xi} f(\xi)$$

If $\dot{V}(\xi)$ is negative, V will decrease along the trajectory solutions of the system



Aleksandr Lyapunov in 1908

Lyapunov's Theorem of Stability

■ This fundamental theorem of stability is also known as the Lyapunov's Direct (second) Method (1892)

Theorem 2 - Local (asymptotic) stability - Lyapunov's Theorem

Consider the equilibrium point $\xi^\star=0$ and a domain $\mathcal{D}\subset\mathbb{R}^n$ including $\mathbf{0}$. Let $V:\mathcal{D}\to\mathbb{R}$ be a \mathcal{C}^1 function such that

$$V(\mathbf{0}) = 0$$
 and $V(\xi) > 0$ $\forall \xi \in \mathcal{D} \setminus \{0\}$ (V is positive definite)
$$\dot{V}(\xi) \leq 0 \quad \forall \xi \in \mathcal{D}$$
 (\dot{V} is negative semi-definite)

then $\xi^{\star} = 0$ is **stable**. Moreover, if

$$\dot{V}(\xi) < 0 \quad \forall \xi \in \mathcal{D} \setminus \{0\}$$
 (\dot{V} is negative definite)

then $\xi^* = 0$ is asymptotically stable.

- \blacksquare This theorem states the local stability on a domain \mathcal{D}
- \blacksquare Any function V satisfying the above conditions is called a Lyapunov function

Remark 3 - Conditions sufficiency

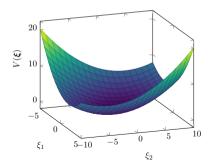
Theorem 2 only provides sufficient conditions for stability, not necessary conditions!

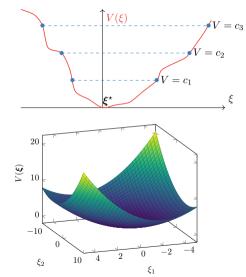
Remark 4 - Negative definiteness

 \dot{V} being negative definite is the most difficult condition to satisfy. In many cases, \dot{V} is only negative semi-definite.

Lyapunov Functions

- State domain definition: $\boldsymbol{\mathcal{E}} \in \mathcal{D} \subset \mathbb{R}^n$
- $V(0) = 0, V(\xi) > 0 \ \forall \xi \in \mathcal{D} \setminus \{0\}, \text{ and } \dot{V}(\xi) \leq 0 \text{ (or } < 0)$
- Lyapunov function are extended to non energetic functions
- $V(\xi) = c_i$ are called **level surfaces** (or Lyapunov surfaces)





Sketch of the Proof of Lyapunov's Theorem

- lacktriangle Stability is proven by definition considering the properties of V
- ▶ Given $\epsilon > 0$, choose $r \in (0, \epsilon]$ s.t. $\mathcal{B}_r \triangleq \{\xi \in \mathbb{R}^n \mid ||\xi|| \le r\} \subset \mathcal{D}$
- Let $\alpha = \min_{\|\xi\|=r} V(\xi)$. Then $\alpha > 0$ since V is pos. def.
- ▶ Take $\beta \in (0, \alpha)$ and let $\Omega_{\beta} \triangleq \{ \xi \in \mathcal{B}_r \mid V(\xi) \leq \beta \}$
- ▶ Then $\Omega_{\beta} \subset \mathcal{B}_r$, and any trajectory starting in Ω_{β} stays in Ω_{β} since

$$\dot{V}(\boldsymbol{\xi}(t)) \leq \mathbf{0} \Rightarrow V(\boldsymbol{\xi}(t)) \leq V(\boldsymbol{\xi}(\mathbf{0})) \leq \beta, \ \forall t \geq 0$$

- ▶ There is \mathcal{B}_{δ} with $\delta > 0$ s.t. $||\xi|| \leq \delta \implies V(\xi) < \beta$ as V cont.
- lacksquare Then $\mathcal{B}_\delta\subset\Omega_eta\subset\mathcal{B}_r$, and

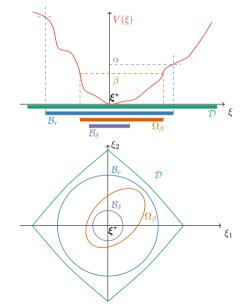
$$\boldsymbol{\xi}_0 \in \mathcal{B}_{\delta} \Rightarrow \boldsymbol{\xi}_0 \in \Omega_{\beta} \Rightarrow \boldsymbol{\xi}(t) \in \Omega_{\beta} \Rightarrow \boldsymbol{\xi}(t) \in \mathcal{B}_r$$

■ Therefore, we have shown that $\xi^* = 0$ is stable since

$$||\boldsymbol{\xi}_0|| < \delta \implies ||\boldsymbol{\xi}(t)|| < r < \epsilon, \ \forall t > 0$$

• Prove asymptotic stability by using a contradiction argument

Hint: Considering Ω_{β} reduces to show that $V(\xi(t)) \to \mathbf{0}$ as $t \to \infty$



Global Asymptotic Stability

- lacktriangle Previous theorems considered **local** stability for a region \mathcal{D}
- What are the conditions to have a global property, that is for $\mathcal{D} = \mathbb{R}^n$?

Theorem 3 - Global asymptotic stability

Consider the equilibrium point $\xi^* = \mathbf{0}$. Let $V : \mathbb{R}^n \to \mathbb{R}$ be a \mathcal{C}^1 function such that

$$\begin{array}{llll} V(\mathbf{0}) = 0 & \text{and} & V(\xi) > 0 & \forall \xi \neq \mathbf{0} & \text{$(V$ is positive definite)} \\ ||\xi(t)|| \to +\infty & \Rightarrow & V(\xi) \to +\infty & & & & & & & & & \\ \dot{V}(\xi) < 0 & \forall \xi \neq \mathbf{0} & & & & & & & & & \\ \dot{V} \text{ is negative definite)} & & & & & & & & & \\ \end{array}$$

then $\xi^* = 0$ is globally asymptotically stable (GAS).

Stability of Quadrotor Rotational Dynamics

Take the quadrotor rotational dynamics modeled in the previous lessons

$$\begin{cases}
I_{xx} \dot{p} &= qr(I_{yy} - I_{zz}) + \tau_{\phi} \\
I_{yy} \dot{q} &= pr(I_{zz} - I_{xx}) + \tau_{\theta} \\
I_{zz} \dot{r} &= pq(I_{xx} - I_{yy}) + \tau_{\psi}
\end{cases}$$

- $\omega \triangleq [p \ q \ r]^T$ is the quadrotor angular velocity vector
- $au_{m{B}} \triangleq \begin{bmatrix} au_{\phi} & au_{ heta} & au_{\psi} \end{bmatrix}^T$ is the rotation torque input vector
- ullet I_{xx} , I_{yy} , I_{zz} are the moments of inertia on each main axis
- Torques τ_C due to the gyroscopic effects of the rotors are neglected
- Show that with $\tau_{\phi} = \tau_{\theta} = \tau_{\psi} = 0$, the origin $\omega^{\star} = 0$ is stable.
- Is the origin $\omega^* = 0$ asymptotically stable?
- Suppose the torque inputs apply the feedback control $au_{B} = -K \cdot \omega$, with $K \triangleq [k_{p} \quad k_{a} \quad k_{r}]^{T}$ of positive coeffs. Show that the origin of the closed-loop system is GAS.

Lecture Outline

- Introduction
- Preliminary Notions of Stability
- 3 Stability Analysis by Lyapunov's Direct Method
- 4 LaSalle's Invariance Principle
- Input-to-State Stability Analysis

LaSalle's Invariance Principle

- Is it still possible to show asymptotic stability in the case where \dot{V} is only semi-negative definite?
- Idea: If no trajectory stay forever at points where $\dot{V}(\xi) = 0$ except at $\xi^* = 0$, then ξ^* is asymptotically stable.

Definition 5 - Invariant set

A set $\mathcal{M} \subset \mathbb{R}^n$ is an invariant set with respect to $\dot{\boldsymbol{\xi}} = f(t, \boldsymbol{\xi})$ if

$$\boldsymbol{\xi}_0 \in \mathcal{M} \Rightarrow \boldsymbol{\xi}(t) \in \mathcal{M}, \ \forall t \in \mathbb{R}$$

A set $\mathcal{M} \subset \mathbb{R}^n$ is a positively invariant set if

$$\boldsymbol{\xi}_0 \in \mathcal{M} \implies \boldsymbol{\xi}(t) \in \mathcal{M}, \ \forall t \geq 0$$

If a trajectory ξ belongs to \mathcal{M} at some time instant, then it belongs to \mathcal{M} for all (positive) time instants.

Theorem 4 - LaSalle's theorem

Let $\Omega \subset \mathcal{D}$ be a compact set that is positively invariant for the autonomous system.

Let $V: \mathcal{D} \to \mathbb{R}$ be a \mathcal{C}^1 function such that $\dot{V}(\xi) \leq 0$ in Ω .

Let \mathcal{E} be the set of all points in Ω where $\dot{V}(\boldsymbol{\xi}) = 0$.

Let \mathcal{M} be the largest invariant set in \mathcal{E} .

Then every trajectory $\xi(t)$ starting in Ω approaches \mathcal{M} as $t \to \infty$.

Barbashin and Krasovskii Theorems

- Showing that $\xi(t) \to 0$ as $t \to \infty$ require to establish that the largest invariant set in \mathcal{E} is the origin
- This is achieved by showing that no solution can stay identically in \mathcal{E} , except for the trivial trajectory solution $\boldsymbol{\xi}(t) = \mathbf{0}$
- These results are obtained by extending Theorem 4 to such a case and taking $V(\xi)$ to be positive definite

Corollary 1 - Asymptotic stability (by invariance principle)

Consider the equilibrium point $\xi^* = 0$ and a domain $\mathcal{D} \subset \mathbb{R}^n$ including 0. Let $V : \mathcal{D} \to \mathbb{R}$ be a \mathcal{C}^1 , positive definite function such that \dot{V} is negative semi-definite in \mathcal{D} ($\forall \xi \in \mathcal{D}$, $\dot{V}(\xi) < 0$).

Let $\mathcal{S} \triangleq \{ \xi \in \mathcal{D} \mid \dot{V}(\xi) = 0 \}$ and suppose that no solution can stay identically in \mathcal{S} other than the solution $\xi(t) = 0$.

Then $\xi^* = 0$ is asymptotically stable.

Corollary 2 - Global asymptotic stability (by invariance principle)

Consider the equilibrium point $\xi^* = 0$. Let $V : \mathbb{R}^n \to \mathbb{R}$ be a \mathcal{C}^1 , radially unbounded, positive definite function such that V is negative semi-definite in \mathbb{R}^n ($\forall \boldsymbol{\xi} \in \mathbb{R}^n$, $V(\boldsymbol{\xi}) < 0$).

Let $\mathcal{S} \triangleq \{\xi \in \mathbb{R}^n \mid \dot{V}(\xi) = \mathbf{0}\}$ and suppose that no solution can stay identically in \mathcal{S} other than the solution $\xi(t) = \mathbf{0}$.

Then $\xi^* = 0$ is **GAS**.

When $\dot{V}(\xi)$ is negative definite, $S = \{0\}$. Then, Corollaries 1 and 2 coincide with Theorems 2 and 3, respectively.

Stability of Quadrotor Translational Dynamics

Take the quadrotor translational dynamics modeled in the previous lessons

$$\begin{cases} m\ddot{x} &= T(\sin\psi\sin\phi + \cos\psi\sin\theta\cos\phi) \\ m\ddot{y} &= T(-\sin\phi\cos\psi + \sin\psi\sin\theta\cos\phi) \\ m\ddot{z} &= T\cos\theta\cos\phi - mg \end{cases}$$

- $p \triangleq \begin{bmatrix} x & y & z \end{bmatrix}^T$ is the CoM quadrotor position vector
- $\Gamma \triangleq [\phi \quad \theta \quad \psi]^T$ is the Euler angles vector in fixed frame
- m is the quadrotor mass
- g is the gravitational acceleration $(g \approx 9.81 \text{m/s}^2)$
- T is the total thrust generated by the rotors
- Show that with $\nu_{\phi} = \nu_{\theta} = \nu_{z} = 0$, the hovering point (p, v) = (0, 0) is an equilibrium. Is this equilibrium (asymptotically) stable?
- Take a PD-like feedback control that stabilizes the translational axes. Show that the origin of the closed-loop system is GAS.
- Is the origin still GAS when taking only a proportional controller?

Lecture Outline

- Introduction
- Preliminary Notions of Stability
- 3 Stability Analysis by Lyapunov's Direct Method
- 4 LaSalle's Invariance Principle
- Input-to-State Stability Analysis

Stability of Nonautonomous Systems

■ Consider the nonautonomous (with input) time-invariant system

$$\dot{oldsymbol{\xi}} = f(t, oldsymbol{\xi}, oldsymbol{
u}) \quad ext{with initial conditions } oldsymbol{\xi}(t_0) = oldsymbol{\xi}_0$$

- lacksquare $f:\mathcal{D} o\mathbb{R}^n$ is a locally Lipschitz map from a domain $\mathcal{D}\subset\mathbb{R}^n$ into \mathbb{R}^n
- lacksquare The control input $u\in\mathbb{R}^m$ is a piecewise continuous function and is bounded

Assumption 1 - 0-GAS system

We assume that the unforced system $\dot{\xi} = f(t, \xi, 0)$ has the equilibrium point $\xi^* = 0$ and is GAS

If the variety How does the system behave when it is subject to a bounded input ν ?

Definitions of Comparison Functions

- Nonautonomous systems require uniformity for (asymptotic) stability
- Comparison functions are needed to restate the stability theorems

Definition 6 - Class K function

A continuous function $\alpha:[0,a)\to[0,\infty)$ is class $\mathcal K$ if

- it is strictly increasing
- it is such that $\alpha(0) = 0$

Definition 7 - Class \mathcal{K}_{∞} function

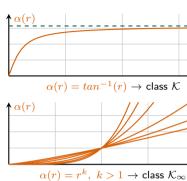
A continuous function $\alpha:[0,a)\to[0,\infty)$ is class \mathcal{K}_{∞} if

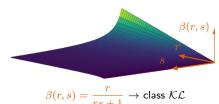
- ullet it is class ${\cal K}$
- it is such that $a=\infty$ and $\lim_{r\to\infty}\alpha(r)=\infty$

Definition 8 - Class \mathcal{KL} function

A continuous function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is class \mathcal{KL} if

- $\beta(\cdot,s)$ is class $\mathcal K$
- $\beta(r,\cdot)$ is decreasing and $\lim_{s\to\infty}\beta(r,s)=0$
- What about the function $\beta(r,s) = r^k e^{-as}$, a > 0, k > 1?





Lyapunov's Theorem with Comparison Functions

■ It is possible to rewrite Theorem 2 in terms of comparison functions

Theorem 5 - Local (asymptotic) stability - Comparison functions

Consider the equilibrium point $\xi^\star=0$ and a domain $\mathcal{D}\subset\mathbb{R}^n$ including $\mathbf{0}$. Let $V:\mathcal{D}\to\mathbb{R}$ be a \mathcal{C}^1 function such that

$$\alpha_1(||\boldsymbol{\xi}||) \le V(\boldsymbol{\xi}) \le \alpha_2(||\boldsymbol{\xi}||)$$

$$\dot{V}(\boldsymbol{\xi}) \le -\alpha_3(||\boldsymbol{\xi}||)$$

Then the equilibrium point $\xi^* = 0$ is

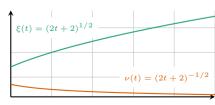
- **stable** if α_1 , α_2 are class \mathcal{K} functions and $\alpha_3 \geq 0$ on \mathcal{D}
- ▶ asymptotically stable if α_1 , α_2 and α_3 are class \mathcal{K}_{∞} functions
- Show that Theorem 2 and Theorem 5 are equivalent.

Nonautonomous Linear vs Nonlinear Systems

- lacktriangle Consider the linear time-invariant system $\dot{\xi}=A\xi+B
 u$ where A is assumed to be Hurwitz
- lacksquare We can write the solution trajectory $m{\xi}(t)$ explicitly as $m{\xi}(t)=e^{m{A}t}m{\xi}_0+\int_0^t e^{m{A}(t- au)} m{B}m{
 u}(au)\;d au$
- Since A is Hurwitz, $\exists (\lambda, \mu)$ such that $||e^{At}|| \leq \lambda e^{-\mu t}$, so we have

$$||\boldsymbol{\xi}(t)|| \leq \lambda e^{-\mu t} ||\boldsymbol{\xi}_0|| + \int_0^t \lambda e^{-\mu(t-\tau)} ||\boldsymbol{B}|| \ ||\boldsymbol{\nu}(\tau)|| \ d\tau \leq \lambda e^{-\mu t} ||\boldsymbol{\xi}_0|| + \frac{\lambda ||\boldsymbol{B}||}{\mu} \sup_{0 \leq \tau \leq t} ||\boldsymbol{\nu}(\tau)||$$

- For linear systems, the 0-GAS property implies that bounded inputs results in bounded state trajectories
- These properties generally do not hold for nonlinear systems, even under 0-GAS assumption!
- Consider the nonlinear system $\dot{\xi} = -\xi + (\xi^2 + 1)\nu$, which is 0-GAS
- \blacksquare Taking $\nu(t)=(2t+2)^{-1/2}$ and $\xi_0=\sqrt{2}$ results in unbounded $\xi(t)$
- \blacksquare Even worse, the constant input $\nu=1$ results in a finite-time explosion!



Input-to-State Stability of Nonautonomous Systems

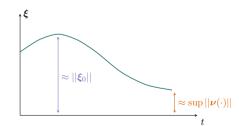
Definition 9 - Input-to-State Stability (ISS)

The system is input-to-state stable (ISS) if and only if it exists β of class \mathcal{KL} and γ of class \mathcal{K} such that

$$\forall t \ge 0, \quad ||\boldsymbol{\xi}(t)|| \le \beta(||\boldsymbol{\xi}_0||, t) + \gamma \left(\sup_{0 \le \tau \le t} ||\boldsymbol{\nu}(\tau)||\right)$$

holds for all initial conditions ξ_0 and all bounded inputs $\nu(\cdot)$.

- The ISS property of the system means that any bounded input implies a bounded state
- The ISS property combines both overshoot and asymptotic behavior
- Since $\beta(||\xi_0||,t) \to 0$ as $t \to \infty$, the state is bounded by $\sup ||\nu(\cdot)||$
- For small t, the $\beta(||\boldsymbol{\xi}_0||,t)$ term quantifies the transient magnitude



Theorem for ISS Analysis

The theorem for ISS property is also based on a Lyapunov function

Theorem 6 - Input-to-State Stability

Consider a function $V: \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}$ which is \mathcal{C}^1 and such that

$$\alpha_1(||\boldsymbol{\xi}||) \le V(t,\boldsymbol{\xi}) \le \alpha_2(||\boldsymbol{\xi}||)$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial \boldsymbol{\xi}} f(t, \boldsymbol{\xi}, \boldsymbol{\nu}) \le -\alpha_3(||\boldsymbol{\xi}||), \quad \forall ||\boldsymbol{\xi}|| \ge \rho(||\boldsymbol{\nu}||) > 0$$

where α_1 , α_2 are class \mathcal{K}_{∞} functions, ρ is a class \mathcal{K} function and α_3 is a pos. def. function, then the system is ISS.

References

- Y. Ariba, Analyse des Systèmes Non-Linéaires, 4AE-SE, INSA Toulouse, 2022.
- J. K. Hedrick and A. Girard, Control of Nonlinear Dynamic Systems: Theory and Applications, 2005.
- H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey, 2002.
- N. Marchand, Control of Nonlinear Systems, Course of Master PSPI, Univ. Joseph Fourier, 2009-2010.
- E. D. Sontag, Mathematical Control Theory, 2nd Edition, Springer, New York, 1998.
- E. D. Sontag, Input to State Stability: Basic Concepts and Results, Lecture Notes in Mathematics, 2008.
- Robotics: Aerial robotics course, University of Pennsylvania. Available: https://www.coursera.org/learn/robotics-flight.